
Answering Controlled Natural Language

Biomedical Queries using Answer Set

Programming

Mohammad Syeed Ibn Faiz

Faculty of Science

University of Western Ontario

April 29, 2011

1

1 Introduction

Internet hosts a large amount of biomedical knowledge in the form of ontologies.
There are means to extract useful information from these ontologies, mostly
SQL-like formal query languages. This makes it di�cult for people with little
or no knowledge about a formal query language. But such people constitute a
major portion of the userbase of these ontologies. So a simpler query language
is required. Since no language is possibly easier than a natural language for
a human being, it is undoubtedly a good choice as a query language. But
there are certain di�culties with natural languages, especially when it comes
to automated processing. The ambiguities in the vocabulary and grammar of a
natural language make it di�cult to process and reason about queries in that
language. One way to resolve this problem is to modify a natural language in
a way so that the natural �avour is still there without any of its ambiguities.
Controlled natural languages are such modi�cations.

A controlled natural language is a subset of a natural language, obtained by
restricting the grammar and vocabulary in order to eliminate the ambiguities.
One such controlled natural language is Attempto Controlled English(ACE).
ACE is a subset of standard English with a restricted syntax and restricted
semantics governed by a small set of construction and interpretation rules. At-
tempto Parsing Engine(APE) parses ACE text unambiguously into a discourse
representation structure which is a variant of �rst-order logic. Therefore it is
possible to transform a query given in ACE to a logical formalism that would
allow us to do automated reasoning to �nd answer to that query.

Answer Set Programming (ASP) is one such logical formalism. ASP is a
knowledge representation and declarative programming paradigm oriented to-
wards di�cult search problems. ASP supports representation of constraints,
defaults, aggregates, preferences etc. and allows to automate reasoning in ab-
sence of complete information. ASP allows to integrate other technologies, like
description logics reasoners and Semantic Web technologies. For example, in
[2] the authors illustrates the applicability and e�ectiveness of using ASP for
integrating relevant parts of knowledge extracted from biomedical ontologies
in RDF(S)/OWL and answering complex queries related to drug safety and
discovery.

In our project we have designed and developed a system for answering queries
expressed in ACE by transforming the queries to an ASP program. Similar
approach has been undertaken before [1]. They designed and developed a con-
trolled natural language, called BioQueryCNL, for expressing biomedical queries
over some ontologies, and introduced an algorithm to convert a query in Bio-
QueryCNL into a program in ASP. Though our project is inspired by their work,
there are some positive signi�cant di�erences.

2

2 Attempto Controlled English

2.1 Basics

Attempto Controlled English(ACE) is a subset of standard English with a re-
stricted syntax and restricted semantics governed by a small set of construction
and interpretation rules. The construction rules determine which sentences be-
long to ACE. In other words construction rules specify the grammar for ACE.
On the other hand interpretation rules eliminate ambiguities. For example, one
interpretation rule states that if an adverb can modify the preceding or the
following verb then it modi�es the preceding one. This rule helps to eliminate
ambiguity from a sentence like this - �A customer who enters a card manually
types a code�, which in ACE has the same meaning as �A customer who manu-
ally enters a card types a code�. Attempto Parser Engine(APE) converts ACE
text unambiguously into a Discourse Representation Structure(DRS), which is
a variant of �rst-order logic.

Discourse Representation Structure derived from an ACE text is returned
as

drs(Domain, Conditions)

The �rst argument of drs/2 is a list of discourse referents, i.e. quanti�ed vari-
ables naming objects of the domain of discourse. The second argument of drs/2
is a list of simple and complex conditions for the discourse referents. The list
separator `,' stands for logical conjunction. Simple conditions are logical atoms,
while complex conditions are built from other discourse representation struc-
tures with the help of the logical connectors negation `-', disjunction `v', and
implication `=>' [3].

A DRS like

drs([A,B],[condition(A),condition(B)])

is usually pretty-printed as

The DRS uses a rei�ed, or �at notation for logical atoms. For
example, the noun a man that would customarily be represented as

man(A)

is represented in DRS as

object(A, man, countable, na, eq, 1)

where the predicate card has become a constant argument to a prede�ned pred-
icate 'object'. As a result ACE only has a �xed number of prede�ned predicates
which allows its developers to conveniently formulate axioms for those predi-
cates.

3

2.2 Predicates

Discourse Representation Structure has eight prede�ned predicates. Detailed
description of each of them can be found in [3]. Here we brie�y introduce some
of them so that readers can easily understand the example discussed later in
this section.

Object-predicates represent objects introduced by di�erent forms of nouns.
They have the following form:

object(Ref, Noun, Class, Unit, Op, Count)

Property-predicates represent properties that are introduced by adjectives. The
references can be either variable or expressions. They can take the following
forms:

property(Ref1,Adjective,Degree)

property(Ref1,Adjective,Degree,Ref2)

property(Ref1,Adjective,Ref2,Degree,CompTarget,Ref3)

Relation-predicates represents relations introduced by of-constructs like �symp-
tom of disease�. They have the following form:

relation(Ref1,of,Ref2)

Predicate-predicates represent relations that are introduced by intransitive, tran-
sitive and ditransitive verbs. They can have the following forms:

predicate(Ref,Verb,SubjRef)

predicate(Ref,Verb,SubjRef,ObjRef)

predicate(Ref,Verb,SubjRef,ObjRef,IndObjRef)

Modi�er_pp-predicates stand for verb phrase modi�ers that are introduced by
prepositional phrases.

modifier pp(Ref1,Preposition,Ref2)

Finally a query-predicate points to the object or relation a query was put on.

query(Ref,QuestionWord)

2.3 Complex Structures

Apart from predicates a DRS can also include complex structures. Among the
eight possible complex structures here we introduce only a few.

Classical negation is represented as

-drs([A,B],[condition(A),condition(B)]

Disjunction is represented as

4

v(drs([A],[condition(A)]), drs([B],[condition(B)]))

Questions are marked in the DRS by the word question and is internally repre-
sented as

question(drs([A,B],[condition(A),condition(B)])

In nested discourse representation structure, a DRS can occur as an element of
the condition list of another DRS. For example,

drs([A,B],[condition(A),-drs([],[condition(B)])])

2.4 Examples

Now we will look at a few smaple ACE sentences and their corresponding DRSs.

2.4.1 Example 1

ACE Sentence: A man is mortal.

DRS:

The last two digits seperated by a '/' at the end of each predicate stand
for the sentence id and token id respectively. Therefore the object-predicate is
produced for the token man, which is the second token in the only sentence.

2.4.2 Example 2

ACE Sentence: Which drug cures Asthma?

DRS:

This is an example of nesting of DRS. The textual representation is the
following:

drs([],[question(drs([A,B],[query(A,which)-1/1,

object(A,drug,countable,na,eq,1)-1/2,

predicate(B,cure,A,named('Asthma'))-1/3]))])

5

2.4.3 Example 3

ACE Sentence: What are the symptoms of the diseases that are related to

ADRB1 or that are treated by Epinephrine?

DRS:

3 Answer Set Programming

Answer Set Programming (ASP) is a knowledge representation and declarative
programming paradigm oriented towards di�cult search problems. ASP sup-
ports representation of constraints, defaults, aggregates, preferences etc. and
allows to automate reasoning in absence of complete information. In ASP knowl-
edge or problem is represented as a program and its meaning is captured by its
models, also called answer sets. Answer set for a program can be computed
by an answer set solver. There are many answer set solvers including DLV,
Smodels, Clasp etc. Though there are di�erences in syntaxes of these solvers
but overall they are similar to some extent. The language of ASP is based on
the Prolog language and can be considered as an extended logic programming
language.

Traditional logic programming is query driven, that means user enters a
query and the system tries to �nd answer to that query. But ASP works in
a di�erent manner. In ASP a problem is encoded into a logic program. The
system tries to �nd models of that program which is the solution to the problem.
A model for a logic program is a set of atoms that satis�es all the rules of the
program. The following is an example from [4]

ide_drive :- hard_drive, not scsi_drive.

scsi_drive :- hard-drive, not ide_drive.

scsi_controller :- scsi_drive.

hard_drive.

Here the �rst rule says that, if we have a hard_drive in our computer and
we don't have a scsi_drive then we must have an ide_drive. Then the next
rule says that if we have a hard_drive in our computer and we do not have a

6

ide_drive then we must have a scsi_drive. The third rule says that if we have
a scsi_drive in the computer then we must include a scsi_controller in it. The
last rule is a fact which mentions that we have a hard-drive in our computer.

This program has two stable models. The �rst one is:

M1 = {hard_drive, ide_drive}

and the second one is:

M2 = {hard_drive, scsi_drive, scsi_controller}

ASP is based on stable model semantics. That means an ASP solver only
computes those models that are stable. Informally a model is stable when it
satis�es all the rules in the program and when every atom in it has some �reason�
to be there: for each atom in the model there must be some rule where that
atom is the head of the rule and the rule body is true in the model. This is why
in the example shown above the model M1 does not include scsi_controller. If
we add scsi_controller to the �rst model then the resulting set of model still
satis�es all the rules but this model will no longer be a stable model, because
scsi_controller is needed only when scsi_drive is there and when scsi_drive is
missing there is no reason to add scsi_controller to the model.

Now let's consider an ACE query from the previous section:

What are the symptoms of the diseases that are related to ADRB1

or that are treated by Epinephrine?

This query can be translated into the following rules:

what_be_symptom(C) :- symptom_of_disease(C,D),

disease_be_related_to_gene(D,adrb1).

what_be_symptom(C) :- symptom_of_disease(C,D),

drug_treat_disease(epinephrine,D).

Now if we include these two rules in an ASP program with all the facts:

symptom_of_disease(symptom_n,disease_m)...

disease_be_related_to_gene(disease_x,gene_y)...

drug_treat_disease(drug_p,disease_q)....

then the resulting model computed by an answer set solver will provide answer
to the given query.

4 Converting ACE Query to Answer Set Pro-

gram

4.1 Transforming ACE Query into DRS

Throughout this section we will consider the following query:

7

What are the drugs that treat a disease which causes Anxiety or

which is related to HTR1A?

Before transforming a query into DRS we �rst preprocess the query so that each
proper noun is pre�xed by its type. For example, after preprocessing the above
query will become the following:

What are the drugs that treat a disease which causes Symptom_Anxiety

or which is related to Gene_HTR1A?

This type information for each entity is required later on when we construct
ASP rules.

Attempto Controlled English text can be unambiguously translated into a
Discourse Representation Structure by Attempto Parsing Engine (APE). Using
APE 6.6 we obtain the following DRS for the preprocessed query:

[]

QUESTION

[A,B,C,D,E]

query(A,what)-1/1

predicate(E,treat,C,D)-1/6

[F]

predicate(F,cause,D,named(Symptom_Anxiety))-1/10

v

[G,H]

modifier_pp(G,to,named(Gene_HTR1A))-1/16

predicate(G,be,D,H)-1/14

property(H,related,pos)-1/15

object(D,disease,countable,na,eq,1)-1/8

object(C,drug,countable,na,geq,2)-1/4

predicate(B,be,A,C)-1/2

4.2 Parsing Discourse Representing Structure

We have implemented a recursive decent parser that parses a DRS and converts
it into an internal representation. This internal representation gives the abil-
ity to manipulate every component of a DRS. Our parser parses the following
grammar:

DRS � drs(Domain , Conditions)

Domain � [] | [Referent {,Referent}*]

Conditions � [Condition {,Condition}*]

Condition � Predicate | ComplexStructure

Predicate � Object | Property | Relation | Predicate

| Modifier_pp | Modifier_adv | Query

ComplexStructure � Question | Negation | Disjunction

Referent � String

8

Object � object(String,String,String,String,String,String)

Property � property(String,String,String)

Property � property(String,String,String,String)

Property � property(String,String,String,String,String,String)

Relation � Relation(String, of, String)

....

Question � question(DRS)

Negation � -(DRS)

Disjunction � v(DRS, DRS)

The parser we have implemented is generic, in the sense that its usage is not
limited to parsing queries only about biomedical domain.

4.3 Converting Discourse Representation Structure to ASP

Once we obtain an internal representation of the DRS corresponding to the
given query we convert it into one or more ASP rules. There can be more than
one ASP rule for a given query depending on the query being disjunctive or not.
An ASP rule consists of two parts: an atom which is called the head of the rule
and a list of atoms called the body of the rule.

4.3.1 Constructing Head Atom

For a Yes/No query the head can be simply a predicate without any variable in
its parameter list. For example, let's consider the following query:

Does Epinephrine cure Asthma?

The pretty-printed DRS for this query is the following:

[]

QUESTION

[A]

predicate(A,cure,named(Drug_Epinephrine),

named(Disease_Asthma))-1/3

There is no query-predicate since this query is not put on any particular entity,
rather it merely asks whether a certain relation holds on not. For this query
our implementation produces a head like the following:

wh(yes)

For a Which/What query there is a query predicate in the DRS and the head
generation process is more interesting. Let's consider a Which query �rst:

Which drug cures Asthma?

Corresponding DRS:

9

[]

QUESTION

[A,B]

query(A,which)-1/1

object(A,drug,countable,na,eq,1)-1/2

predicate(B,cure,A,named(Disease_Asthma))-1/3

For a Which query like this we construct the head atom as follows:

1. Construct an atom H := which(query.ref) //which(A)

2. type := object1.noun where object1.ref = query.ref //type = drug

3. Append type to the name of H

4. Return H //which_drug(A)

Now we consider a What query which is infact a paraphrase of the above query:

What is the drug that cures Asthma?

Corresponding DRS:

[]

QUESTION

[A,B,C,D]

query(A,what)-1/1

predicate(D,cure,C,named(Disease_Asthma))-1/6

object(C,drug,countable,na,eq,1)-1/4

predicate(B,be,A,C)-1/2

For a What query we construct a head atom using the following algorithm:

1. Find a predicate p such that p.verb=�be�,p.subjRef = query.ref

2. Create an atom H := what(p.objRef) //what(C)

3. type := object1.noun where object1.ref = p.objRef //type = drug

4. Append type to the name of H

5. Return H //what_be_drug(C)

4.3.2 Constructing Body

Construction of bodies becomes complex in presence of nested DRSs. We con-
sider our internal representation of DRS as a tree. Whenever there is a nested
complex structure which is disjunction, the tree has branching. Each branch
of that tree contributes a separate body thereby a separate rule. Therefore the
number of rules produced for a query is the same as the number of branches in
the tree corresponding to its DRS. Our algorithm explores the tree using depth
�rst search and produces body atoms at each leaf of the tree using the following
algorithm;

10

1. For each predicate p create an empty atom H

2. <type1,ref1>:= resolveTypeRef(p.subjRef)

3. <type2,ref2>:= resolveTypeRef(p.objRef)

4. adv := getAdverbMod(p.ref)

5. pp := getPrepositionalMod(p.ref)

6. H := type1_p.verb_adv_pp_type2(ref1, ref2)

7. Add H to the list of body atoms

8. For each relation r create an empty atom H

9. <type1,ref1>:= resolveTypeRef(r.ref1)

10. <type2,ref2>:= resolveTypeRef(r.ref2)

11. H := type1_of_type2(ref1, ref2)

12. Add H to the list of body atoms

13. Return list of body atoms

Now we will show how this algorithm works for the query we are considering in
this section, i.e. the following:

What are the drugs that treat a disease which causes Anxiety or

which is related to HTR1A?

The DRS for this query, as shown above, is a tree containing two branches. The
left branch corresponds to the following part of the query:

What are the drugs that treat a disease which causes Anxiety?

We now consider this branch. The predicates that we get at the leaf of this
branch are the following:

query(A,what)-1/1

predicate(F,treat,C,D)-1/6

predicate(E,cause,D,named(Symptom_Anxiety))-1/10

object(C,drug,countable,na,geq,2)-1/4

object(D,disease,countable,na,eq,1)-1/8

predicate(B,be,A,C)-1/2

Among these six predicates the �rst and the last ones have already been consid-
ered for generating the head atom. So we will not take them into consideration
any more. Among the rest there are two predicate-predicates. For each of them
we will add an atom to the body.

For the �rst predicate-predicate we get:

<type1,ref1>:= <drug, C>

<type2,ref2>:= <disease, D>

H := drug_treat_disease(C, D)

For the second predicate-predicate we get:

<type1,ref1>:= <disease, D>

<type2,ref2>:= <symptom, anxiety>

H := disease_cause_symptom(D, anxiety)

11

Therefore, for the left branch we get the following body:

drug_treat_disease(C,D), disease_cause_symptom(D,anxiety)

4.3.3 Constructing ASP Rules

When the head atom and all the lists of body atoms are constructed we can
generate ASP rules. For each body list we get a separate rule by adding the
head atom to the front of the body. For the example query we stated at the
beginning of this section, we get the following two rules:

what_be_drug(C) :- drug_treat_disease(C,D),

disease_cause_symptom(D,anxiety)

what_be_drug(C) :- drug_treat_disease(C,D),

disease_be_related_to_gene(D,htr1a)

5 Implementation Issues

We have implemented a system in Java that answers biomedical queries posed in
ACE. More speci�cally it can answer queries involving the following biomedical
concepts and the relations between them:

� Gene

� Drug

� Disease

� Symptom

In this section we will brie�y describe some issues related to our development.

5.1 Collecting Data from Biomedical Ontologies

To be able to answer biomedical queries our system must have some biomedical
knowledge at its disposal. To build this knowledge base we took the help of some
biomedical ontologies available on the internet. The knowledge of relationships
between genes, diseases and drugs was obtained from PharmGKB [5], which is a
Pharmacogenetics and Pharmacogenomics Knowledge Base. That gave us more
than 23,000 relationship information in the following format:

...
Gene:PA34913 S100P Drug:PA450218 levonorgestrel PMID:16157482
Gene:PA27504 TSC22D3 Drug:PA450218 levonorgestrel PMID:16157482
Gene:PA29415 HP Drug:PA451900 vitamin e PMID:20415560

To make this knowledge accessible from an ASP program we encoded them into
ASP facts:

12

...

gene_drug(s100p,levonorgestrel).

gene_drug(tsc22d3,levonorgestrel).

gene_drug(hp,vitamin_e).

We obtained disease and symptom information from Medical Symptoms and
Signs of Disease web page [6]. From their web pages we were able to extract
about 7,000 relationships between diseases and symptoms.

5.2 Post-Processing

We need a post-processing step to post-process the generated ASP rules. We
need this step to make sure that the names of the generated predicates match
with the names we have used to encode the biomedical knowledge. We also need
to make sure that the parameters of the predicates are in correct order. For
example, the relationship between drug and gene is encoded in the knowledge
base using atoms with name - �gene_drug�. Therefore when we �nd an atom in
a generated ASP rule as the following

drug_be_related_to_gene(D, G)

we need to rename it as well as to change the order of the parameters as follows

gene_drug(G, D)

5.3 Answer Set Solver

We have used Clasp [7], which is an answer set solver for (extended) normal logic
programs. Current answer set solvers work on variable free programs. Therefore,
a grounder is needed that, given an input program with �rst-order variables,
transforms it into an equivalent ground (variable-free) program. Gringo is such
a grounder. In our implementation we have used Clingo, which combines Clasp
and Gringo in a monolithic way. Its input language is that of Gringo, and its
output corresponds to that of Clasp.

5.4 System Architecture

The following �gure shows the overall system architecture of our developed
system:

13

We have developed a graphical user interface for the convenience of using
the system. A screenshot of our developed system is given below:

14

6 Related Works

Answer Set Programming is used to answer complex queries over biomedical
ontologies in [2]. They introduced a new method for integrating relevant parts of
knowledge extracted from biomedical ontologies and answering complex queries
related to drug safety and discovery. An extension of their work is done in
[1]. Here they introduced a controlled natural language for biomedical queries,
called BioQueryCNL and presented an algorithm to convert a biomedical query
in this language into an answer set program. However, they have not made an
implementation of their proposed system publicly available.

Our work in this project is greatly in�uenced by this latter work. How-
ever our implementation is di�erent from theirs in some respect. We have not
designed a query language over ACE like BioQueryCNL. Our implementation
supports more forms of query. For example, a query which is not started with a
question word is not a valid query in BioQueryCNL. But such a query is valid
in ACE and therefore also valid in our implementation. One such example is
the following:

Asthma is cured by which drug?

Moreover, our implementation supports query with negation and it can
handle arbitrarily large queries where there can be nested negation inside an-
other negation and so on. Support for queries with negation is absent in Bio-
QueryCNL.

One feature that is lacking in our implementation but which is present in
BioQueryCNL is the support for cardinality constraints like �at least�, �at most�,
�exactly� and so on.

15

7 Conclusion

We have designed and developed a system that can answer biomedical queries
presented in Attempto Controlled English by transforming them into answer set
programs and then solving those programs using an answer set solver. Some
example queries that can be answered by our implementation are listed in Ap-
pendix A. However, there are certain limitations in our implementation. The
knowledgebase of our implementation is not exhaustive and includes only simple
relationships between four biomedical concepts, namely gene, drug, disease and
symptom. There are ontologies that store a multitude of information. It would
be more e�ective if we can integrate these ontologies in their existing format
without the need to encode them.

Another limiation of our implementation is that it does not support queries
with cardinality constraints like �at least�, �at most�, �exactly� and so on. ASP
supports aggregates, constraints and preferences. Therefore queries with the
cardinality constraints can be conveniently expressed using answer set programs.
Future works can be directed towards overcoming these limitations.

Source code and executables of our implementation are available at http:
//www.csd.uwo.ca/People/gradstudents/mibnfaiz/bqas/.

References

[1] Esra Erdem, Reyyan Yeniterzi. Transforming Controlled Natural Language
Biomedical Queries into Answer Set Programs. In Proceedings of the Work-
shop on BioNLP.

[2] Oliver Bodenreider, Zeynep Hande Coban, Mahir Can Doganay, Esra Er-
dem, and Hilal Kosucu. A preliminary report on answering complex queries
related to drug discovery using answer set programming. In Proceedings of
ALPSWS.

[3] Norbert E. Fuchs, Kaarel kaljurand, and Tobias Kuhn. Discourse represen-
tation structure for ace 6.6. Technical report IFI-2010.0010, Department of
Informatics, University of Zurich.

[4] Tommi Syrjanen. Lparse 1.0 User's Manual.

[5] PharmGKB. http://www.pharmgkb.org

[6] MedicalSymptomsSignsDisease. http://www.medicinenet.com/symptoms_
and_signs/article.htm

[7] Clasp. http://www.cs.uni-potsdam.de/clasp/

[8] Attempto. http://attempto.ifi.uzh.ch/site

16

Appendix

A Some Queries and the corresponding gener-

ated Answer Set Programs

ACE Query Answer Set Program

Which drug cures Asthma?

Asthma is cured by which drug?

What is the drug that cures Asthma?

which_drug(A) :-

drug_cure_disease(A,asthma).

Does Formoterol cure Asthma?

Is Asthma cured by Formoterol?

wh(yes) :-

drug_cure_disease(formoterol,asthma).

Which symptoms are alleviated by

Epinephrine?

Epinephrine alleviates which

symptoms?

What are the symptoms that are

alleviated by Epinephrine?

which_symptom(A) :-

drug_alleviate_symptom(epinephrine,A).

What are the symptoms of the diseases

that are related to ADRB1 or that are

treated by Epinephrine?

what_be_symptom(C) :-

symptom_of_disease(C,D), dis-

ease_be_related_to_gene(D,adrb1).

what_be_symptom(C) :-

symptom_of_disease(C,D),

drug_treat_disease(epinephrine,D).

What are the drugs that treat a disease

which causes Anxiety or which is

related to HTR1A?

what_be_drug(C) :-

drug_treat_disease(C,D),

disease_cause_symptom(D,anxiety).

what_be_drug(C) :-

drug_treat_disease(C,D), dis-

ease_be_related_to_gene(D,htr1a).

What are the diseases that cause

Insomnia and are treated by a drug X?

/*comment: ACE supports the use of

variables. Here X is such a variable */

what_be_disease(C) :-

disease_cause_symptom(C,insomnia),

drug_treat_disease(E,C).

.

17

ACE Query Answer Set Program

What are the symptoms of the diseases
that are treated by a drug which is
related to ADRB1 and which is not
related to HTR1A?

what_be_symptom(C) :-
symptom_of_disease(C,D),
drug_treat_disease(E,D),
drug_be_related_to_gene(E,adrb1),
not
drug_be_related_to_gene(E,htr1a).

What are the symptoms of the disease
which is not caused by a gene which is
not related to ADRB1?
/*comment: negation inside negation is
handled */

what_be_symptom(C) :-
symptom_of_disease(C,D), not
gene_cause_disease(F,D),
gene_be_related_to_gene(F,adrb1).

18

